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A B S T R A C T  

We give several characterizations of semilocal rings and deduce that ra- 
tionally closed subrings of semisimple artinian rings are semilocal, that 
artinian modules have semilocal endomorphism rings, and that artinian 

modules cancel from direct sums. 

Throughout, let R be a ring, associative with 1. We write U(R) for the group 

of units of R, and J(R) for the Jacobson radical of R. The ring R is said to be 

semiloeal  if R/J (R )  is semisimple artinian. 

The results in this article were motivated by work of Menal, cf [10], [4], and 

are briefly summarized as follows. 

Theorem 1 below gives various characterizations of semilocal rings, showing, 

in particular, that R is semiloeal if and only if there is a homomorphism from R 

to a semisimple artinian ring S taking non-units of R to non-units of S. Thus, if 

R is a subring of a semisimple artinian ring S, then R will be semilocal provided 

the units of R consist precisely of the units of S which lie in R. This proves a 

conjecture of Menal. 

Corollary 4 shows that if R is a subring of a left artinian ring S such that S /R  

is artinian as left R-module, then R is semilocal. 

Corollary 6 verifies two other conjectures of Menal: if M is an artinian 

right R-module then EndRM is semilocal, and, for all right R-modules A, B, 
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if M ~ A ~ M ~ B then A ~ B. In contrast, indecomposable  artinian modules 

need not have local endomorphism rings; in fact, by Theorem 3.5 of [4], any 

commutative noetherian semiloeal ring can occur as the endomorphism ring of 

an artinian module, so any indeeomposable commutative noetherian semiloeal 

ring can occur as the endomorphism ring of an indecomposable artinian module. 

Theorem 7 is a recent result of F. Ced6 that classical quotient rings with the 

maximum condition on left and right annihilators are semiloeal. 

We have made no attempt to give a detailed history, since a large number of 

results have been obtained in this area, and the literature is quite extensive, cf 

[11, [2], [3], [4], [5], [6], [7], [91, [10], t111, [121, [131, [141 and [151. 

In order to state our results it will be convenient to have the following termi- 

nology and notation. 

A homomorphism of rings S --* R is said to be local if it carries non-units to 

non-units, that is, the image of S \ U(S) lies in R \ U(R). A rat ional ly closed 

subr ing  of R is a subring S such that U(S) = S N U(R), which is equivalent to 

the inclusion map S --* R being a local homomorphism. 

Let M be an abelian group and ,4 a set of subgroups of M. Given X, Y, g in 

,4 such that X ~9 Y = Z, we say that X, Y are ,4-summands of g. The set 

,4 is said to satisfy the m a x i m u m  condit ion wi th  respect  to s u m m a n d s  if 

every nonempty subset B of ,4 contains an element which is an ,4-summand of 

no other element of B. This is the maximum condition for the partial order on ,4 

consisting of equality together with the transitive closure of the relation of being 

a proper ,4-summand. 

Let M be a right R-module. For r E R we write 

1.annM(r) = { m E MI mr = 0}. 

Let ,4 = { 1.annM(r)[ r E R}. If A satisfies the maximum condition with respect 

to summands we say that in M the  left annihilators of  e lements  of  R 

satisfy the  m a x i m u m  condit ion with respect  to summands .  There are 

many common situations where this occurs. For example, it holds if M satisfies 

the maximum condition for left annihilators of elements of R. It holds also if there 

exists a ring S such that M is an S-R-bimodule and 1.u.dims M is finite, where 

1.u.dims M denotes the uniform dimension of M as left S-module, that is, the 

supremum of the cardinalities of independent sets of nonzero S-submodules of 

M. The left-right dual notion will be denoted r.u.dim. If R is semisimple artinian 
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then 1.u.dimR R = r.u.dimR R, and we denote the common value by u.dim R. 

We can now give our characterizations of semilocal rings. 

THEOREM i: For any ring R the following are equivalent: 

(a) R is sem//ocal. 

(b) There exists a local homomorphism from R to a semisimple artinian ring. 

(c) There exists a ring S and an S-R-bimodule M such that 1.u.dims M is 

~nite and 1.annM(r) # 0 for all r �9 a \ U(R). 
(d) There exists a right R-module M such that in M the left annihilators of 

elements of R satisfy the maximum condition with respect to summands, 

and LannM(r) # 0 for all r �9 a \ U(R). 

(e) There exists a non-negative integer n, and a function d : R ~ {0 , . . . ,  n} 

such that for all a, b �9 R, d(1 - ab) + d(a) = d(a - aba), and if d(a) = 0 

then a �9 U(R). 

(f) There exists a partial order >_ on R satisfying the minimum condition, such 

that for all a, b �9 R, i f  1 - ab �9 R \ U(R) then a > a - aba. 

(c*),(d*), (e*),(f*) The left-right du~s of (c), (d), (e), (f). 
Moreover, i f  these equivalent conditions hold 

u . d i m R / J ( R )  < 1.u.dims M, and, in (e), u . d i m R / J ( R )  <_ n. 

then, in (c), 

Proos We shall show (a) =~ (b) =~ (c) =~ (d) =~ (f) =~ (a), and (c) =~ (e) =~ 

(f). 
(a) =~ (b) If R is semilocal then R ~ R / J ( R )  is a local homomorphism from 

R to a semisimple artinian ring. 

(b) =~ (c) Suppose that s R --~ S is a local homomorphism and S is semisimple 

artinian. Let M be S viewed as S-R-bimodule, so 1.u.dims M is finite. Also, if 

r E R \ U(R) then f ( r )  E S \ U(S), so f ( r )  is a right zerodivisor in S, so 

1.annM(r) -~ O. 
(c) ~ (d) Suppose that (c) holds. Then {1.=nM(,') l  ," e R} is a set of left S- 

submodules of M, so satisfies the maximum condition with respect to summands. 

Thus (d) holds. 

(d) =~ (f) Suppose that (d) holds and let A = {1.annM(r)l r �9 R}. On A, 

the transitive closure of the relation is-a-proper- A-summand-of is an irreflexive 

transitive relation, which we shall denote <. For a, b �9 R, set a > b in R if 

1.annM(a) < 1.annM(b) in .,4. On R, the relation > is irreflexive and transitive, 

so we have a partial order _> on R. It satisfies the minimum condition because 
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.4 satisfies the  m a x i m u m  condit ion with respect  to .A-summands.  Moreover,  if 

a, b �9 R such tha t  1 - ab �9 R \ U(R) ,  then 

1.annM(1 -- ab) # 0 and 1.annM(1 -- ab) ~B 1.annM(a) = 1.annM(a - aba), 

so a > a - aba. 

(f) =~ (a) Suppose  tha t  (f) holds. 

L e t / ~  denote  R / J ( R ) ,  and for r �9 R let ~ denote  r + J(R) .  

We now describe a procedure  which, given an element  a of R such tha t  a is 

a nonzero idempoten t ,  yields an element  a '  of R satisfying the  following three  

conditions: a > at; ~. - a, a - a t, a t is a complete  set of  or thogonal  idempotents ;  

and,  a - a t generates  a s imple right ideal of /~ .  

Suppose  then  tha t  we have a �9 R such tha t  a is a nonzero idempoten t .  In 

aR \ J (R) ,  choose an element  ab t ha t  is min imal  with respect  to the  given par t ia l  

order.  

Let  x be  an element of R; by (f), if 1 -  abx �9 R \ U(R) t hen  

ab > ab - abxab, but  then  ab - abzab �9 J (R)  since ab is min imal  in aR \ J (R) .  

Thus  we have proved  

(1) if x �9 R such tha t  1 - abx �9 R \ U(R) then  ab~ab = ab. 

Since a b e  R \ J ( R )  we can choose abc E abR such tha t  1 - a b c  E R \ U ( R ) .  Let 

a' = a -  abca. Since 1 - a b c  E 1:l\ U(R),  a > a -  abca = a ' ,  by  (f). Apply ing  (1) 

wi th  z = c, we see tha t  ~b~ab = ab. Hence ~b~ is idempoten t ,  so ~ - a t = ~b~5, 

a t, 1 - fi, is a complete  set of or thogonal  idempotents .  To see tha t  the  right ideal 

(~ - a ' ) .~ = a b ~ / ~  = ab/~ ~ 0 is simple, consider any abd E abR \ J (R) .  Choose 

e �9 R such tha t  1 - abde �9 R \ U(R). Applying (1) wi th  z = de, we see t ha t  

abd~ab = ab, so abdR = abel. This  proves tha t  (a - at)/~ is a s imple right ideal 

of R,  as claimed. 

Let us s ta r t  wi th  a0 = 1 and apply  this procedure  successively to genera te  a 

descending sequence 1 = a0 > al  > . - .  in R; by the m i n i m u m  condit ion this 

sequence is necessarily finite, which means  tha t  for some non-negat ive  integer  m,  

~,n = 0. Here a0 - al ,a l  - a2, . . . ,~tm-1 - ~,~ is a complete  set of or thogonal  

idempoten t s  in R, each of which generates  a s imple right ideal of  R. Hence R is 

semisimple ar t inian,  so R is semilocal. 
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(c) =~ (e) Suppose that (c) holds. Set n = 1.u.dims M, and define d: R --~ 

{0 , . . . , n}  by d(r) = 1.u.dims(1.annM(r)) for all r E R. It is straightforward to 

verify that for all a, b E R, d(1 - ab) + d(a) = d(a - aba), and if d(a) = 0 then 

a �9 U(R). 

(e) =~ (f) Suppose that (e) holds. For a, b �9 R, set a > b if d(a) < d(b). This 

defines a partial order > on R and (f) is readily verified. 

Now suppose all the equivalent conditions hold. 

We want to show that,  in (e), u.d imR/J(R)  <_ n. By the proof of 

(e) =~ (f), we may assume that, with respect to the partial order in (f), ev- 

ery chain in R has length at most n. By the proof of (f) =~ (a), there exists a 

chain a0 > el > ' "  > am in R with m = u.dimR/J(R) ,  so u.d imR/J(R)  <_ n. 

To see that,  in (c), u.d imR/J(R)  <_ 1.u.dimsM, notice that by the proof of 

(c) =~ (e), we may assume that (e) holds with n = 1.u.dims M, so by the preceding 

result, u.d imR/J(R)  _< n = 1.u.dims M. | 

COROLLARY 2: / f  R -'* S is a local homomorphism of rings and S is semilocal 

then R is semilocal, and u .d imR/J(R)  < u.dimS/J(S) .  

In particular, rationally dosed subr/ngs of semisimple artinian rings are semi- 

local. 

Proof." Let M be S/J (S )  viewed as S-R-bimodule. By Theorem 1 (c) =~ (a), R 

is semilocal, and by the last part of Theorem 1, u.dJmR/J(R) <_ 1.u.dims M = 

u . ~ m S / S ( S ) .  

For example, suppose that R is a subring of a ring S such that R is a direct 

summand of S as left R-module. Here every element of R which has a right 

inverse in S already has a right inverse in R, so R is rationally closed in S; thus 

if S is semilocal then R is semilocal, as was first proved in [12], and moreover 

u.dim R/J (R)  < u.dim S/J(S) .  

A consequence of the previous paragraph is that if G is a group such that the 

group ring RG is semilocal then for any subgroup H of G, RH is semilocai, as 

observed in [121, and moreover u.dim R H / J ( R H )  < u.dim RG/J(RG).  

The following gives another criterion for recognizing semilocal subrings. 

THEOREM 3: Let R be a ring in which every non-unit is a right zerodivisor, such 

that in R the left annihilators of elements of R satisfy the maximum condition 

with respect to summands. Then R is semilocal and u .d imR/  J(R) <_ 1.u.dimR R. 
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Moreover, if S is a subr/ng of R such that in R / S  the left annihilators of 

elements o[ S satisfy the maximum condition with respect to summands, then S 

is semilocal and u.dim S/  J( S) <_ 1.u.dimR R + 1.u.dims R/  S. 

Proo~ It suffices to prove only the second part, since the first part is then 

obtained by taking S = R. Let M be R (~ (R/S)  viewed as (R x S)-S-bimodule. 

The hypotheses ensure that in M the left annihilators of elements of S satisfy 

the maximum condition with respect to summands. Consider any s E S \ U(S). 

If s e S \ U(R) then s is a right zerodivisor in R, so 1.annM(s) r 0; if s �9 U(R) 

then s -1 + S is a nonzero element of R / S  which is right annihilated by s, so 

l.annM(s) r 0. Thus in any event 1.annM(s) r 0. By Theorem 1 (d) =~ (a), S is 

semilocal. To see that u.dim S/J(S)  <_ 1.u.dimRxs(R ~ (R/S)), we can assume 

that the right-hand side is finite, and apply the inequality concerning (c) in the 

last part of Theorem 1. I 

We emphasize one particular case of the above result. 

COROLLARY 4: If S is a subring of a left artinian ring R and 1.u.dims R / S  is 

finite, then S is semilocal, and u.dimS/J(S)  <_ 1.u.dimR R + 1.u.dims R/S.  

We turn now to consequences for endomorphism rings. 

Recall that 1 is in the  stable range of R if whenever ax + b = 1 in R, there 

exists c E R such that a + bc E U(R). Also, a right R-module M cancels f rom 

direct sums if for all right R-modules A, B, if M ~ A ~ M ~ B then A ~ B. 

THEOREM 5: Let M be a right R-module such that every injective 

R-linear endomorphism of M is bijective, and such that the set of R-submodules 

{Kerf[ f E EndR(M)} satisfies the maximum condition with respect to sum- 

mands. Then EndRM is semilocal, 1 is in the stable range of EndRM, and the 

right R-module M cancels from direct sums. Moreover 

u.dim((EndRM)/S(EndRM)) < r.u.dimR M. 

Proof: Consider M as an EndnM-R-bimodule. In M the right annihilator of 

an element f of EndRM is precisely Ker f ,  and f is a unit if and only if f is 

bijective. Now Theorem 1 (d*) ~ (a) shows that EndRM is semilocal. By a 

result of Bass, 1 is then in the stable range of EndnM, cf p.313 of [8]. By a 

result of Evans, M then cancels from direct sums, cf p.315 of [8]. 
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To see that  u.e~m((EndRM)/J(EndRM)) <_ r.u.dimR M, we can assume that 

the right-hand side is finite, and apply the left-right dual of the last part of 

Theorem 1. | 

The following answers Question 16 of [10] in the affirmative. 

COROLLARY 6 : Let M be an artinian right R-module. Then E n d g M  is 

semi!ocal, 1 is in the stable range of EndRM, and the right R-module M cancels 

from direct sums. Moreover u.dim( (EndR M ) /  J(EndRM) ) <_ r.u.dimR M. 

Added October, 1992: Recall that R is said to be its o w n  classical  quot ient  

ring if every non-unit of R is a zerodivisor, that is, either a right zerodivisor or 

a left zerodivisor. 

F. Ced6 has found an elegant application of Theorem 1 to obtain the following 

generalization of Stafford's result, Corollary 2.7 (i) of [13], that a noetherian ring 

which is its own classical quotient ring is semilocal. The theorem also generalizes 

Proposition 2.4 of [4], since it shows that the rings considered in that proposition 

are actually semilocal; indeed, this was the original motivation for the result. 

THEOREM 7 (Ced6): Suppose that R is its own classical quotient ring, and that 

in R both the set of left annihilators of elements of R, and also the set of right 

annihilators of elements of R, satisfy the maximum condition with respect to 

summands. Then R is semilocal. 

In particular, if R is its own classical quotient ring and R satisfies the maxi- 

mum condition for both left annihilators of elements and for right annihilators 

of elements then R is semilocal. 

Proof'. Let ,4 = (1.annR(r)l r E R} and B = {r.annR(r)l r e R) .  On ,4 the 

transitive closure of the relation is-a-proper-.A-summand-of determines a partial 

order < which satisfies the maximum condition. Similarly, on B the transi- 

tive closure of the relation is-a-proper-B-summand-of determines a partial order, 

which we again denote _<, and which also satisfies the maximum condition. For 

a, b E R, set a > b if 1.annR(a) < 1.annR(b) in A, or 1.annR(a) = 1.annR(b) and 

r.annR(a) < r.annR(b) in B. This gives a partial order _> on R satisfying the 

minimum condition. 

Now suppose that a, b E R such that 1 - ab E R \ U(R). By Theorem 1 

(f) => (a), it suffices to show that a > a - abe. 
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Here R is its own classical quotient ring and 1 - ab is a non-unit, so 1 - ab is a 

zerodivisor, that is, either l.annR(1 - ab) ~ 0 or r.annR(1 -- ab) ~ O. Hence either 

1.annR(1 - ab )  ~ 0 or r.annR(1 -ba )  ~ O, since left multiplication by a determines 

a right R-linear isomorphism r.annR(1 - ba) ~ r.annR(1 - ab), with inverse given 

by left multiplication by b. Now, from the usual equalities 1.annR(a - aba) = 

l.annR(a) (B 1.annR(1 -- ab) and r.annR(a - abe) = r.annR(a) @ r.annR(1 - be), 

and the definition of the partial order on R, we see that a > a - aba. | 

In Example 6.4 of [13], Stafford constructs a right noetherian ring which is 

its own classical quotient ring, but which is not semilocal; hence the two-sided 

conditions in Theorem 7 cannot be weakened to one-sided conditions. 

As often happens, in the case of rings satisfying polynomial identities, one- 

sided conditions suffice: by Proposition 2.11 of [13], if R satisfies a polynomial 

identity, and has the maximum condition on annihilator ideals, and is its own 

classical quotient ring, then R is semilocal. This result does not seem to follow 

immediately from any of our characterizations, although there is a connection 

which can be seen as follows. Stafford first shows that if R satisfies a polynomial 

identity and has the maximum condition on annihilator ideals, then there is a 

finite set of prime ideals P1 , . . . ,  P ,  of R such that the natural map 

R --, _~ /&  x . . .  x R /P , ,  

sends zerodivisors to zerodivisors. As is well-known, R/P1 x . . .  x R / P ,  embeds 

in a semisimple artinian ring Q, so if R is its own classical quotient ring, then 

we have a local homomorphism from R to Q, mad by Corollary 2 above, R is 

semilocal. 
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